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ABST_Cr

Large, flexible spacecraft are typically characterized by a large number of
significant elastic modes with very small inherent damping, low, closely spaced

uatural frequencies, and the lack of accurate knowledge of the structural

parameters. This paper summarizes some of our recent research on the design of

robust controllers for such spacecraft, which will maintain stability, and possibly

performance, despite these problems. Two types of controllers are considered, the

first being the llnear-quadratlc-Gausslan-(LQG)-type. The second type utilizes

output feedback using collocated sensors and actuators. The problem of designing

robust LQG-type controllers using the frequency domain loop transfer recovery (LTR)

method is considered, and the method is applied to a large antenna model.

Analytical results regarding the regions of stability for LQG-type controllers in

the presence of actuator nonlinearities are also presented. The results obtained

for the large antenna indicate that the LQG/LTR method is a promising approach for

control systems design for flexible spacecraft. For the second type of controllers

("collocated" controllers), it is proved that the stability is maintained in the

presence of certain commonly encountered nonlinearities and flrst-order actuator

dynamics. These results indicate that collocated controllers are good candidates

for robust control in situations where model errors are large.

CHARACTERISTICS OF LARGE SPACE STRUCTURES

AND RESULTING CONTROL CHALLENGES

o Large number of significant elastic modes

o Very small inherent damping

o Low, closely-spaced natural frequencies

o Model errors (no. of modes, frequencies,

damping ratios, mode-shapes)

b These characteristics make even linear design

with perfect actuators/sensors difficultl

> There is a need for "robust" controllers

ROBUST CONTROLLERS

Robust = Maintain stability and acceptable performance,
in spite of

o Modelling errors o Uncertainties

o Parameter variation

o Failures

o Actuator/sensor
nonlinearities
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ROBUSTCONTROLLERDESIGN APPROACHES

The first approach considered is the LQG-type controller. In order to be

practically implementable, it is usually necessary to consider only a reduced-order

"design" model for synthesizing the controller. The stability of such reduced-order

controllers is not guaranteed because of the control and observation "spillovers"

[1,2], and because of errors in the knowledge of the plant parameters. The LQG/LTR

method [3,4], which is a frequency-domaln method, offers a systematic approach to

robust controller design in the presence of modeling uncertainties. In this paper,

the LQG/LTR method is briefly described, and the results of its application to a

finite element model of the 122-meter hoop-column antenna are presented. Some

analytical results on the stability of LQG-type controllers in the presence of

realistic actuator nonlinearities are subsequently presented. The second controller

design approach consists of "collocated" controllers which utilize actuator/sensor

pairs placed at the same (or close) locations on the structure. The stability of

such controllers is investigated in the presence of realistic actuator/sensor

nonlinearities and also actuator dynamics.

o I. LQG-TYPE CONTROLLERS

- LQG/LTR method (freq.domain)

for robustness to modeling uncertainties

> application to 122 m hoop-column antenna

- Stability in the presence of actuator/sensor
nonlinearities

o II. "COLLOCATED" CONTROLLERS

- Robustly stable for any number of modes,
for any parameter values

- We investigate effect of actuator/sensor
nonlinearities and dynamics
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LOC/L_ l_'mOD

It was proved by Safonov and Athans [5] that the linear quadratic regulator

(LQR) which employs state feedback has excellent robustness properties, namely,

6_-phase margin and infinite gain margin. However, when the complete state vector
is not available for feedback and an estimator must be used, the resulting LQG-type

compensator has no guaranteed robustness properties. The LOG/LTR technique [3,4]

offers a method to asymptotically "recover" the robustness properties of the full

state feedback controller. The LQG/LTR method basically consists of first defining

a desirable "loop gain" in the frequency domain. For obtaining good tracking

performance (i.e., loop broken at the output), this is accomplished by using the

Kalman-Bucy filter. This loop gain is then "recovered" asymptotically using a

model-based (LOG-type) compensator, which simultaneously satisfies certain stability

robustness conditions, expressed in terms of frequency-domain singular values.

Basic Philosophy

0

0

Define a "desirable" loop gain based on Kaiman-Bucy

filter (KBF)

Recover that loop gain using a model-based compensator

(i.e., LQ regulator and KBF) while satisfying stability

conditions w.r.t, uncertainty.

Compensator Plant
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STABILITY ROBUSTNESS CONDITIONS

The modeling uncertainty can be expressed either as additive [AG(s)] or multi-

plicatlve [Lp(S)]. Different sufficient conditions for stability are available
for these two formulations. These are expressed in terms of the smallest or the

largest singular values of the loop gain, the compensator, and the uncertainty. In

the case of flexible spacecraft, all the flexible modes appear in parallel with the

rigid-body modes. Therefore, the additive uncertainty model is a natural one for

this problem. For satisfying the performance specifications, the _(GpGe)-curve

must pass above the "performance barrier" in the low-frequency region. For satis-

fying the robustness conditions, the O(GpGc)-curve must pass under the high-
frequency "robustness barrier" for the multiplicative uncertainty case, while for

additive uncertainty, a somewhat more complicated condition has to be satisfied.

Multiplicative uncertainty

Additiveuncertainty

1(Lp/-_l_obustness barrier
_-,_,_'_ _ (multiplicative uncertainty)

Pe rfoJr___//_/

"///// _ \_ \'</ /./

_////_. _Frequency, h

////_.. rad/sec Lo_ (GpGc)

o-(i +GpGc)

Ro6ustness6_rtei "_
(additiveuncertainty)//2")_'_

- I -
• Frequency,radlsec
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LQG]LTRCONTROLLERDESIGNPROCEDURE

The first step in applying the LQG/LTR procedure [4] is to define a reduced-

order design model for the large space structure. (In this paper, a sequence of

design models with increasingly higher order was considered, starting with a three

degree of freedom rigid-body model.) The performance barrier is defined by using

the bandwidth specification; e.g., 0.1 rad/sec for the antenna problem. The robust-

ness barrier is defined by the unmodeled structural modes, as well as the parameter

uncertainties. The second step is to obtain an "ideal" full state feedback loop

gain, using the Kalman-Bucy filter equations (loop is broken at the output for good

tracking performance). This loop gain should satisfy the bandwidth specifications.

The third step is to design an LQ regulator so that o(G G ) approaches the idealp c
loop gain in the low-frequency region, and the stability condition is satisfied in

the hlgh-frequency region. The final step is to verify the closed-loop stability

and performance (eigenvalues, tlme-responses, etc.) of the entire closed-loop

system using the "truth model."

1. Define a design model G (j_): x = A x + B u

y=Cx

o Low-freq. performance barrier (bandwidth)

o High-freq. robustness barrier Lv(Ju°)

(unmodeled dynamics; uncertainties)

2. Design a full state feedback compensator (KBF)-

Defines "ideal" loop-gain (loop broken at output)

KBF equations:

J- -cTc = o
AE+ _A -r + LLT /a

H =1__2C T _ GKF = C (sI-A)-IH

Select L and/G to achieve performance specs.

, Design an LQ regulator to asymptotically recover

the freq. response of GKF.

Compensator: G¢ = Gq [sI-A+BGz+HC]-I H
where

G_ = B-rp and ATP + PA - PBBTP + q cTc = 0

Recovery is achieved by increasing q : Gp(s)Gc(s)-_ Gge(s)

4. Verify closed-loop stability, robustness and
performance.
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APPLICATION TO M HOOP-COLUNN ANTENNA

In order to study its applicability, the LOG/LTR method was applied to a finite

element model of the 122-meter hoop-column antenna [6]. The three-axis rlgid-body

attitude angles and the first I0 elastic modes were included in the "truth" model

for this investigation. Only one three-axis torque actuator and one three-axis atti-

tude sensor were used. An inherent structural damping of I percent was assumed to

be present in each elastic mode.

HOOP-COLUMN ANTENNA CONCEPT

Feeds Z

Mast x,_

_ Support cables

Reflective _J_'/l_\\ "_ k,,,. !
_u

x

Solar panels

ANTENNA PARAMETERS

Mass=4544.3 kg Ixx- 5.724 x 106 kg-m2

I = 5.747x106kg-m 2 I =4.383x 106 kg-m 2
yy zz

Ixz = 3. 906 x 104 kg-m 2 Ixy= ly z = 0

Structural mode frequencies (rad/sec)

0.15, 1.35, 1.7, 3.18, 4.53, 5.59, 5.18, 6.84, 7.4, 8.78

Typical Antenna Mode-shapes

\

z x CC_

z

x

y
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HUNERICAL RESULTS

The first design model used was the sixth order rigid-body model consisting of

the three rotational modes, with all the elastic modes being lumped into the addi-

tive uncertainty. L and _ were chosen to give good performance characteristics, and

the q was increased in the LQR Riccati equation to increase the bandwidth as much as

possible without violating the additive uncertainty stability condition. All the

computations were performed using ORACLS [7] and a new frequency-domaln software

package presently under development [8]. It was not possible to obtain the desired

bandwidth using the rigid design model. The next step was to use the design model

consisting of the rigld-body modes plus the first flexible mode, which is a torsion

mode. For this case, somewhat higher bandwidth was obtained, but it still failed to

meet the 0.1 rad/sec specification.
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NUMERICAL RESULTS (CONT'D)

The next design model consisted of the rigid body modes and the first three

flexible modes (first torsion, pitch bending, and yaw bending modes). For this

case, it was possible to obtain the desired 0.I rad/sec bandwidth while also satls-

fylng the stability condition. However, because of the pair of invariant zeros of Gp

near 0.082 rad/sec frequency, the performance is somewhat degraded, as seen by the

dip in the o(GDGc) plot at that frequency. This pair of zeros is close to the

j_ axis and--behaves numerically as nonminimum-phase. The frequency of the zero is

determined by the sensor/actuator locations.
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LQC/LTR METHOD-FINDINCS

The results obtained indicate that it was possible to design a robust

controller using the LQG/LTR method. To achieve the required performance and

robustness, it was necessary to include at least the first three elastic modes in

the design model. Some degradation in performance was caused by the presence of

invariant transmission zeros within the desired bandwidth. Since these zeros depend

on the actuator and sensor locations, it would be advisible to consider these

control aspects in the early design phase of the structure.

o LQG/LTR is a useful method for LSS control

o To meet 0.1 rad/sec bandwidth spec., the design
model should include first 3 modes

O Invariant zeros present in the design bandwidth
degrade the performance:

- Zeros
locations

depend on the sensor/actuator

- Therefore, control aspects should be considered
in early design phase
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EFFECT OF ACI_ATOPJSENSOR NONLINEARITIES

Ensuring stability in the presence of unmodeled dynamics and parameter

uncertainty, which was addressed in the preceding section, is only one aspect of the

overall robustness problem. Other considerations include the effect of nonlineari-

ties which are inherently present in components such as the actuators. For example,

most real-life actuators have magnitude limits (saturation). Many actuators also

have dead-zones, hysteresis, etc. Therefore, it is important to ensure the closed-

loop stability in the presence of actuator nonlinearities.

It was proved by Safonov and Athans [5] that the LQ regulator can tolerate

nonlinearities in the [I/2, _) sector without causing instability. (A nonlinear

function N(a) is said to lie in the [k,_) sector if N(0)=0 and a[N(a)-ku]>0.)
I

However, most nonlinearities encountered in practice do not lie in the [I/2, =)

sector. For example, a saturation nonlinearity lies in that sector in a neighbor-

hood of the origin, but escapes the sector in regions away from the origin. Such

(saturation-type) nonlinearities will be termed as "Type-l" nonlinearities. If

Type-I nonlinearities are present, it can be proved that [9] there exists a region

of attraction such that all trajectories originating in that region will converge to

the origin exponentially. The expression obtained for the region of attraction, as

well as the accompanying asymptotic properties, provides methods for selecting

better performance function weights.

o First consider LQ Regulator (LQR) only:

Realistic nonlinearities escape the [1/2,o0) stability
sector:

o Type I Nonlinearities- (saturation-type):

-These escape the [1/2Jx_) sector in regions
away from the origin

[I/2,00)sector

-We prove that there exists a region of attraction
(Riccati matrix P provides a natural Lyapunov function)

__ Sa = (x I x'rPx < d )
d = rain RrO=-

- S_t can be readily determined for a given design

- to make So large, increase R or decrease _.

- If Re{_i(A)} < 0, Sa-,- g n aa R+oo.

If not, S&-*- constant bounded or semi-bounded
region in E n.
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EFFECTOFACTUATOR NONLINEARITIES (CONT'D)

Nonlinearities such as dead-zone or hysteresis lle in the [I/2,m) stability

sector in regions away from the origin, but escape the region in a neighborhood of

the origin. Such nonlinearities will be termed "Type-II" nonlinearities. It can be

proved that, in the presence of Type-II actuator nonlinearities, there exists a

region of ultimate houndedness such that all the trajectories will enter that region

in a finite time, and will remain in that region thereafter [I0]. If there are any

limit cycles, they will lle inside that region. The expression obtained for the

region of ultimate boundedness provides methods for selecting better LQ weighting

matrices.

When the full state vector is not available for feedback, a state estimate is

used for feedback. Preliminary results for this case have been obtained, and will

be included in a paper accepted for publication in the IEEE Transactions on Auto-

matic Control (scheduled for December 1986). Additional work is presently in

progress.

o Type II nonlinearities (dead-zone type)

- Escape [1/2,00) sector in a neighborhood of origin

__-_W_W_ ,_J "_""_

Secro_ __ Sec[o_

- We prove that there exists a region of ultimate

boundedness S_:

×coJ Sb ={x I _Px <_ h)
h depends on P, Q, R,_
and the nonlinearities

- Can readily determine region of ultimate

boundednees for a given design

- S b can be made smaller by increasing

or by reducing R.

EXTENSION TO LQG CONTROLLERS

o State estimate is used instead of state vector

Work in progress- prelim, results to appear in
IEEE Trans. Auto. Contr.
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COLLOCATED CONTROLLERS

This class of controllers consists of pairs of compatible actuators and sensors

placed at the same (or close) locations throughout the structure. Thus attitude and

rate sensors collocated with torque actuators will constitute a "collocated attitude

controller". These controllers use negative definite feedback of the measured

attitude and rate. The greatest advantage of such controllers is that, with perfect

(linear, instantaneous) actuators, the closed-loop stability is guaranteed for any

number of modes and any errors in the knowledge of the parameters. However, the

actuators and sensors encountered in practice have nonlinearities and finite

bandwidth, thus invalidating these general stability properties.

o Compatible actuators and sensors _are placed

O

O

at same locations

A  /t de 4-ra e sensor.,

Force
 ct.ator

For control of both rigid-body attitude
and elastic motion

Control input consists of feedback of measured
positions and rates (rotational and/or translational)

ADVANTAGES OF COLLOCATED CONTROLLERS

o With perfect (linear, instantaneous) actuators

and sensors, stability guaranteed for

- Any number of modes

- Any parameter errors

o Simple to implement

PROBLEM: ACTUATORS AND SENSORS HAVE
NONLINEARITIES AND PHASE LAGSI

Our Contribution:- We proved that these robustness
properties still hold in presence of a wide variety
of realistic actuator/sensor imperfections.
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COLLOCATED CONTROLLERS (CONT' D)

Therefore, we investigated the stability of collocated controllers when

imperfect actuators/sensors are present. Using the Lyapunov method and function-

space techniques, we proved that the stability properties of such controllers remain

intact even in the presence of a variety of actuator/sensor nonlinearities and

first-order actuator dynamics [11]. These results substantially increase the

applicability of collocated controllers, and also identify them as good candidates

for robust control especially when the modeling uncertainty is very large; e.g.,

during deployment, assembly, or initial operation when the parameters have not yet

been identified. Investigation of stability in the presence of higher-order

actuator dynamics is being planned.

OUR ROBUSTNESS RESULTS

o Robust stability for ANY parameter values and
ANY no. of modes is still maintained if

- actuator NL's are monotonic increasing
and sensor NL's belong to 1st and 3rd quadrant

- if at least one actuator and sensor per axis
is functional

- actuators have linear first-order dynamics, and

Proportional gain < (actuator bandwidth) x (rate gain)

o With only velocity feedback (for damping enhancement),
stable if all NL's belong to 1st and 3rd quadrants,
and actuators have 1st order dynamics

o Research continuing for higher-order actuator dynamics
and for obtaining better performance.

Nonlinearity lying in 1st and Brd quadrants
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CONCLUDING REMARKS

The problem of designing robust controllers for flexible spacecraft was

addressed using two approaches. The first approach consisted of an LQG-type compen-

sator. It was found that this type of compensator can be robustifled against

unmodeled dynamics using the loop-transfer-recovery-(LTR) procedure. The presence

of transmission zeros can cause performance degradation, and should be considered in

the early design phase while selecting actuator/sensor locations. Effects of sensor/

actuator nonlinearities were investigated, and expressions were obtained for

stability regions. The second design approach considered utilizes "collocated"

controllers, which were shown to have excellent robustness properties in the

presence of not only modeling errors, but also actuator/sensor nonlinearities and

dynamics. Future efforts should attempt to obtain less conservative stability

regions in the presence of nonlinearities, and to develop procedures to robustify

LQG-type compensators simultaneously against modeling errors and nonlinearities.

For collocated controllers, efforts should be directed towards obtaining optimal

feedback gains, as well as stability results with higher-order actuator dynamics.

o LQG/LTR is a promising method

-Consideration must be given to transmission zeros

(actuator/sensor location)

o Collocated controllers offer highly robust control
in the presence of large modeling uncertainty:

o Deployment o Assembly

o Initial operation o Failure modes

Directions:

o Obtain less conservative results for LQG-type
controllers with realistic nonlinearities

- combine with freq.-domain compensator
design methods

- apply to realistic problem (e.g., SCOLE)

o Study other robust control design methods:

- H _°- methods

- SSV Method (Doyle, Wall, Stein, Athans)

- Stable factorization method (Vidyasagar)

o Develop methods for optimizing collocated controller
performance

o Study effect of sampled-data implementation
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